Michael Barresi

Professor of Biological Sciences

Michael Barresi

Contact & Office Hours

Sabin-Reed Hall 401A



Ph.D., Wesleyan University

B.A., Merrimack College


Michael Barresi’s research interests are focused on how glial cells help wire the nervous system in the embryonic zebrafish brain. His lab discovered that astroglial cells provide a substrate for midline crossing axons in the forebrain. Further investigation will attempt to determine how the cellular identity of these astroglial cells is established, what molecular cues control glial cell positioning in the brain, and, lastly, how these astroglial cells actively participate in axon guidance. In order to address these questions, his lab uses zebrafish as a model system.

500 Internal Server Error

Internal Server Error

The server encountered an internal error and was unable to complete your request. Either the server is overloaded or there is an error in the application.

Selected Publications

Devoto, S. H., W. Stoiber, C. L. Hammond, P. Steinbacher, J. R. Haslett, M. J. Barresi, S. E. Patterson, E. Adiarte, and S. M. Hughes. 2006. "Generality of vertebrate developmental patterns: evidence for a dermomyotome in fish." Evolution and Development 8 (1): 101–10.

Barresi, M. J., L. D. Hutson, C. B. Chien, and R. O. Karlstrom. 2005. "Hedgehog regulated Slit expression determines commissure and glial cell position in the zebrafish forebrain." Development 132 (16): 3643–56.

Sbrogna, J. L., M. J. Barresi, and R. O. Karlstrom. 2003. "Multiple roles for Hedgehog signaling in zebrafish pituitary development." Dev Biol. 254 (1): 19–35.

Hernandez, L. P., M. J. F. Barresi, and S. H. Devoto. 2002. "Functional morphology and developmental biology of the zebrafish: reciprocal illumination from an unlikely couple." Integrative and Comparative Biology 42 (2): 222–31.

Barresi, M. J., J. A. D'Angelo, L. P. Hernandez, and S. H. Devoto. 2001. "Distinct mechanisms regulate slow-muscle development." Curr Biol. 11 (18): 1432–8.

Stickney, H. L., M. J. Barresi, and S. H. Devoto. 2000. "Somite development in zebrafish." Dev Dyn. 219 (3): 287–303. Review.

Barresi, M. J., H. L. Stickney, and S. H. Devoto. 2000. "The zebrafish slow-muscle-omitted gene product is required for Hedgehog signal transduction and the development of slow muscle identity." Development. 127 (10): 2189–99.


Zebrafish: The Rising Stars of Research

By transforming research into novel discoveries, Michael Barresi’s study of zebrafish could shed new light on human ailments ranging from brain cancers to autism-spectrum disorders.

Read more